Outlier Detection Using Replicator Neural Networks
نویسندگان
چکیده
We consider the problem of finding outliers in large multivariate databases. Outlier detection can be applied during the data cleansing process of data mining to identify problems with the data itself, and to fraud detection where groups of outliers are often of particular interest. We use replicator neural networks (RNNs) to provide a measure of the outlyingness of data records. The performance of the RNNs is assessed using a ranked score measure. The effectiveness of the RNNs for outlier detection is demonstrated on two publicly available databases.
منابع مشابه
A Comparative Study of RNN for Outlier Detection in Data Mining
We have proposed replicator neural networks (RNNs) for outlier detection [8]. Here we compare RNN for outlier detection with three other methods using both publicly available statistical datasets (generally small) and data mining datasets (generally much larger and generally real data). The smaller datasets provide insights into the relative strengths and weaknesses of RNNs. The larger datasets...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملReplicator Neural Networks for Outlier Modeling in Segmental Speech Recognition
This paper deals with outlier modeling within a very special framework: a segment-based speech recognizer. The recognizer is built on a neural net that, besides classifying speech segments, has to identify outliers as well. One possibility is to artificially generate outlier samples, but this is tedious, error-prone and significantly increases the training time. This study examines the alternat...
متن کاملOutlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملFficient Variational B Ayesian Neural Net - Work Ensembles for Outlier Detection
In this work we perform outlier detection using ensembles of neural networks obtained by variational approximation of the posterior in a Bayesian neural network setting. The variational parameters are obtained by sampling from the true posterior by gradient descent. We show our outlier detection results are comparable to those obtained using other efficient ensembling methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002